Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 159
Filtrar
1.
Cell Mol Life Sci ; 81(1): 124, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38466420

RESUMO

Acute lung injury (ALI) is an inflammatory disease associated with alveolar injury, subsequent macrophage activation, inflammatory cell infiltration, and cytokine production. Mesenchymal stem cells (MSCs) are beneficial for application in the treatment of inflammatory diseases due to their immunomodulatory effects. However, the mechanisms of regulatory effects by MSCs on macrophages in ALI need more in-depth study. Lung tissues were collected from mice for mouse lung organoid construction. Alveolar macrophages (AMs) derived from bronchoalveolar lavage and interstitial macrophages (IMs) derived from lung tissue were co-cultured, with novel matrigel-spreading lung organoids to construct an in vitro model of lung organoids-immune cells. Mouse compact bone-derived MSCs were co-cultured with organoids-macrophages to confirm their therapeutic effect on acute lung injury. Changes in transcriptome expression profile were analyzed by RNA sequencing. Well-established lung organoids expressed various lung cell type-specific markers. Lung organoids grown on spreading matrigel had the property of functional cells growing outside the lumen. Lipopolysaccharide (LPS)-induced injury promoted macrophage chemotaxis toward lung organoids and enhanced the expression of inflammation-associated genes in inflammation-injured lung organoids-macrophages compared with controls. Treatment with MSCs inhibited the injury progress and reduced the levels of inflammatory components. Furthermore, through the nuclear factor-κB pathway, MSC treatment inhibited inflammatory and phenotypic transformation of AMs and modulated the antigen-presenting function of IMs, thereby affecting the inflammatory phenotype of lung organoids. Lung organoids grown by spreading matrigel facilitate the reception of external stimuli and the construction of in vitro models containing immune cells, which is a potential novel model for disease research. MSCs exert protective effects against lung injury by regulating different functions of AMs and IMs in the lung, indicating a potential mechanism for therapeutic intervention.


Assuntos
Lesão Pulmonar Aguda , Células-Tronco Mesenquimais , Pneumonia , Camundongos , Animais , Macrófagos Alveolares/metabolismo , Lipopolissacarídeos/farmacologia , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/terapia , Pulmão/metabolismo , Macrófagos/metabolismo , Modelos Animais de Doenças , Inflamação/terapia , Inflamação/metabolismo , Organoides/metabolismo
2.
Hepatology ; 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38546278

RESUMO

BACKGROUND AIMS: The immunomodulatory characteristics of mesenchymal stem cells (MSCs) make them a promising therapeutic approach for liver fibrosis (LF). Here, we postulated that MSCs could potentially suppress the pro-fibrotic activity of intrahepatic B cells, thereby inhibiting LF progression. APPROACH RESULTS: Administration of MSCs significantly ameliorated LF as indicated by reduced myofibroblast activation, collagen deposition, and inflammation. The treatment efficacy of MSCs can be attributed to decreased infiltration, activation, and pro-inflammatory cytokine production of intrahepatic B cells. Single-cell RNA sequencing revealed a distinct intrahepatic B cell atlas and a subtype of naive B cells (B-II) was identified, which were markedly abundant in fibrotic liver, displaying mature features with elevated expression of several proliferative and inflammatory genes. Transcriptional profiling of total B cells revealed that intrahepatic B cells displayed activation, proliferation, and pro-inflammatory gene profile during LF. Fibrosis was attenuated in mice ablated with B cells (µMT) or in vivo treatment with anti-CD20. Moreover, fibrosis was recapitulated in µMT after adoptive transfer of B cells, which in turn could be rescued by MSC injection, validating the pathogenic function of B cells and the efficacy of MSCs on B cell-promoted LF progression. Mechanistically, MSCs could inhibit the proliferation and cytokine production of intrahepatic B cells through exosomes, regulating the MAPK and NF-kappa B signaling pathways. CONCLUSIONS: Intrahepatic B-cell serve as a target of MSCs, play an important role in the process of MSC-induced amelioration of LF, and may provide new clues for revealing the novel mechanisms of MSC action.

4.
FASEB J ; 38(5): e23500, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38441537

RESUMO

Hepatitis E virus (HEV) persists in the male genital tract that associates with infertility. However, the presence of HEV in the female genital tract is unreported. Vaginal secretions, cervical smears, and cervix uteri were collected to explore the presence of HEV in the female genital tract. HEV RNA and/or antigens were detected in the vaginal secretions, cervical smears, and the cervix uteri of women. The infectivity of HEV excreted into vaginal secretions was further validated in vitro. In addition, HEV replicates in the female genital tract were identified in HEV-infected animal models by vaginal injection or vaginal mucosal infection to imitate sexual transmission. Serious genital tract damage and inflammatory responses with significantly elevated mucosal innate immunity were observed in women or animals with HEV vaginal infection. Results demonstrated HEV replicates in the female genital tract and causes serious histopathological damage and inflammatory responses.


Assuntos
Líquidos Corporais , Hepatite A , Vírus da Hepatite E , Hepatite E , Animais , Feminino , Masculino , Humanos , Vagina
5.
Asian J Pharm Sci ; 19(1): 100889, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38419761

RESUMO

Primary sclerosing cholangitis (PSC) is an autoimmune cholangiopathy characterized by chronic inflammation of the biliary epithelium and periductal fibrosis, with no curative treatment available, and liver transplantation is inevitable for end-stage patients. Human placental mesenchymal stem cell (hpMSC)-derived exosomes have demonstrated the ability to prevent fibrosis, inhibit collagen production and possess immunomodulatory properties in autoimmune liver disease. Here, we prepared hpMSC-derived exosomes (ExoMSC) and further investigated the anti-fibrotic effects and detailed mechanism on PSC based on Mdr2-/- mice and multicellular organoids established from PSC patients. The results showed that ExoMSC ameliorated liver fibrosis in Mdr2-/- mice with significant collagen reduction in the preductal area where Th17 differentiation was inhibited as demonstrated by RNAseq analysis, and the percentage of CD4+IL-17A+T cells was reduced both in ExoMSC-treated Mdr2-/- mice (Mdr2-/--Exo) in vivo and ExoMSC-treated Th17 differentiation progressed in vitro. Furthermore, ExoMSC improved the hypersecretory phenotype and intercellular interactions in the hepatic Th17 microenvironment by regulating PERK/CHOP signaling as supported by multicellular organoids. Thus, our data demonstrate the anti-fibrosis effect of ExoMSC in PSC disease by inhibiting Th17 differentiation, and ameliorating the Th17-induced microenvironment, indicating the promising potential therapeutic role of ExoMSC in liver fibrosis of PSC or Th17-related diseases.

6.
Biomater Adv ; 154: 213621, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37714042

RESUMO

Bacterial infection causes lung inflammation and recruitment of several inflammatory factors that may result in acute lung injury (ALI). During bacterial infection, reactive oxygen species (ROS) and other signaling pathways are activated, which intensify inflammation and increase ALI-related mortality and morbidity. To improve the ALI therapy outcome, it is imperative clinically to manage bacterial infection and excessive inflammation simultaneously. Herein, a synergistic nanoplatform (AZI+IBF@NPs) constituted of ROS-responsive polymers (PFTU), and antibiotic (azithromycin, AZI) and anti-inflammatory drug (ibuprofen, IBF) was developed to enable an antioxidative effect, eliminate bacteria, and modulate the inflammatory milieu in ALI. The ROS-responsive NPs (PFTU NPs) loaded with dual-drugs (AZI and IBF) scavenged excessive ROS efficiently both in vitro and in vivo. The AZI+IBF@NPs eradicated Pseudomonas aeruginosa (PA) bacterial strain successfully. To imitate the entry of bacterial-derived compounds in body, a lipopolysaccharide (LPS) model was adopted. The administration of AZI+IBF@NPs via the tail veins dramatically reduced the number of neutrophils, significantly reduced cell apoptosis and total protein concentration in vivo. Furthermore, nucleotide oligomerization domain-like receptor thermal protein domain associated protein 3 (NLRP3) and Interleukin-1 beta (IL-1ß) expressions were most effectively inhibited by the AZI+IBF@NPs. These findings present a novel nanoplatform for the effective treatment of ALI.


Assuntos
Lesão Pulmonar Aguda , Infecções Bacterianas , Nanopartículas , Humanos , Azitromicina , Espécies Reativas de Oxigênio , Ibuprofeno/farmacologia , Ibuprofeno/uso terapêutico , Polímeros , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/metabolismo , Inflamação , Nanopartículas/uso terapêutico
7.
Research (Wash D C) ; 6: 0207, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37600495

RESUMO

Primary sclerosing cholangitis (PSC) is a biliary disease accompanied by chronic inflammation of the liver and biliary stricture. Mesenchymal stem cells (MSCs) are used to treat liver diseases because of their immune regulation and regeneration-promoting functions. This study was performed to explore the therapeutic potential of human placental MSCs (hP-MSCs) in PSC through the Takeda G protein-coupled receptor 5 (TGR5) receptor pathway. Liver tissues were collected from patients with PSC and healthy donors (n = 4) for RNA sequencing and intrahepatic cholangiocyte organoid construction. hP-MSCs were injected via the tail vein into Mdr2-/-, bile duct ligation (BDL), and 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) mouse models or co-cultured with organoids to confirm their therapeutic effect on biliary cholangitis. Changes in bile acid metabolic profile were analyzed by liquid chromatography/tandem mass spectrometry (LC-MS/MS). Compared with healthy controls, liver tissues and intrahepatic cholangiocyte organoids from PSC patients were characterized by inflammation and cholestasis, and marked downregulation of bile acid receptor TGR5 expression. hP-MSC treatment apparently reduced the inflammation, cholestasis, and fibrosis in Mdr2-/-, BDL, and DDC model mice. By activating the phosphatidylinositol 3 kinase/extracellular signal-regulated protein kinase pathway, hP-MSC treatment promoted the proliferation of cholangiocytes, and affected the transcription of downstream nuclear factor κB through regulation of the binding of TGR5 and Pellino3, thereby affecting the cholangiocyte inflammatory phenotype.

8.
Stem Cell Res Ther ; 14(1): 197, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37553691

RESUMO

BACKGROUND: Mesenchymal stem cell (MSC) treatment plays a major role in the management of acute lung injury (ALI), and neutrophils are the initial line of defense against ALI. However, the effect of MSCs on neutrophils in ALI remains mostly unknown. METHODS: We investigated the characteristics of neutrophils in lung tissue of ALI mice induced by lipopolysaccharide after treatment with MSCs using single-cell RNA sequencing. Neutrophils separated from lung tissue in ALI were co-cultured with MSCs, and then samples were collected for reverse transcription-polymerase chain reaction and flow cytometry. RESULTS: During inflammation, six clusters of neutrophils were identified, annotated as activated, aged, and circulatory neutrophils. Activated neutrophils had higher chemotaxis, reactive oxygen species (ROS) production, and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase scores than aged neutrophils. Circulatory neutrophils occurred mainly in healthy tissue and were characterized by higher expression of Cxcr2 and Sell. Activated neutrophils tended to exhibit higher expression of Cxcl10 and Cd47, and lower expression of Cd24a, while aged neutrophils expressed a lower level of Cd47 and higher level of Cd24a. MSC treatment shifted activated neutrophils toward an aged neutrophil phenotype by upregulating the expression of CD24, thereby inhibiting inflammation by reducing chemotaxis, ROS production, and NADPH oxidase. CONCLUSION: We identified the immunosuppressive effects of MSCs on the subtype distribution of neutrophils and provided new insight into the therapeutic mechanism of MSC treatment in ALI.


Assuntos
Lesão Pulmonar Aguda , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Camundongos , Animais , Neutrófilos/metabolismo , Antígeno CD47/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Lesão Pulmonar Aguda/induzido quimicamente , Pulmão/metabolismo , Lipopolissacarídeos/toxicidade , Inflamação/terapia , Inflamação/metabolismo , Células-Tronco Mesenquimais/metabolismo
9.
Pharmacol Res ; 194: 106851, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37453673

RESUMO

Hypoxia-inducible factor-2α (HIF-2α) is a transcription factor responsible for regulating genes related to angiogenesis and metabolism. This study aims to explore the effect of a previously unreported mutation c.C2473T (p.R825S) in the C-terminal transactivation domain (CTAD) of HIF-2α that we detected in tissue of patients with liver disease. We sequenced available liver and matched blood samples obtained during partial liver resection or liver transplantation performed for clinical indications including hepatocellular carcinoma and liver failure. In tandem, we constructed cell lines and a transgenic mouse model bearing the corresponding identified mutation in HIF-2α from which we extracted primary hepatocytes. Lipid accumulation was evaluated in these cells and liver tissue from the mouse model using Oil Red O staining and biochemical measurements. We identified a mutation in the CTAD of HIF-2α (c.C2473T; p.R825S) in 5 of 356 liver samples obtained from patients with hepatopathy and dyslipidemia. We found that introduction of this mutation into the mouse model led to an elevated triglyceride level, lipid droplet accumulation in liver of the mutant mice and in their extracted primary hepatocytes, and increased transcription of genes related to hepatic fatty acid transport and synthesis in the mutant compared to the control groups. In mutant mice and cells, the protein levels of nuclear HIF-2α and its target perilipin-2 (PLIN2), a lipid droplet-related gene, were also elevated. Decreased lipophagy was observed in mutant groups. Our study defines a subpopulation of dyslipidemia that is caused by this HIF-2α mutation. This may have implications for personalized treatment.


Assuntos
Dislipidemias , Neoplasias Hepáticas , Animais , Humanos , Camundongos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Dislipidemias/genética , Lipídeos , Mutação
10.
J Pers Med ; 13(3)2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36983624

RESUMO

BACKGROUND: Although increasing preclinical studies have emphasized the benefits of exosome-related therapies, the efficacy of mesenchymal stromal cell (MSC)-derived extracellular vesicles (EV) for liver injury is unclear. In this work, a pooled analysis was conducted to explore the overall effect of MSC-EV in animal models. METHODS: A systematic search of the PubMed, EMBASE, Web of Science, and Cochrane Library databases was performed, from initiation to February 2022, for preclinical studies with liver disease models. The treatment outcomes were evaluated based on liver function, histological analysis, and inflammatory cytokines. RESULTS: After screening, 39 studies were included. Pooled analyses demonstrated that MSC-EV therapy significantly improved liver functions (ALB, ALT, AST, ALP, and γ-GT), promoted the repair of injured liver tissue (damaged area, Ishak's score), reduced inflammatory factors (TNF-α, IL-1ß, IL-6, and IFN-γ), and increased an anti-inflammatory cytokine (IL-10) compared to the placebo control group. Subgroup analyses indicated that MSC-EV had therapeutic effects on liver fibrosis (n = 16), acute liver injury (n = 11), non-alcoholic fatty liver disease (n = 3), autoimmune hepatitis (n = 4), and hepatic ischemia-reperfusion injury (n = 6). Additionally, the therapeutic effect of EV was comparable to that of MSCs. CONCLUSION: MSC-EV have therapeutic potential for acute and chronic liver diseases.

11.
Biomedicines ; 11(3)2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36979826

RESUMO

The noninvasive diagnosis of cholangiocarcinoma (CCA) is insufficiently accurate. Therefore, the discovery of new prognostic markers is vital for the understanding of the CCA mechanism and related treatment. The information on CCA patients in The Cancer Genome Atlas database was used for weighted gene co-expression network analysis. Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were applied to analyze the modules of interest. By using receiver operating characteristic (ROC) analysis to analyze the Human Protein Atlas (HPA), the featured genes were subsequently verified. In addition, clinical samples and GSE119336 cohort data were also collected for the validation of these hub genes. Using WGCNA, we identified 61 hub genes that regulated the progression and prognosis of CCA. Eight hub genes (VSNL1, TH, PCP4, IGDCC3, RAD51AP2, MUC2, BUB1, and BUB1B) were identified which exhibited significant interactions with the tumorigenic mechanism and prognosis of CCA. In addition, GO and KEGG clarified that the blue and magenta modules were involved with chromosome segregation, mitotic and oocyte meiosis, the cell cycle, and sister chromatid segregation. Four hub genes (VSNL1, PCP4, BUB1, and BUB1B) were also verified as featured genes of progression and prognosis by the GSE119336 cohort data and five human tissue samples.

12.
Cancers (Basel) ; 15(3)2023 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-36765640

RESUMO

OBJECTIVE: In recent years, the anti-programmed cell death protein-1 and its ligand (PD-1/PD-L1) or combination therapies have been recommended as an alternative emerging choice of treatment for oncology patients. However, the efficacy and adverse events of different combination strategies for the treatment of tumors remain controversial. METHODS: PubMed, Embase, Cochrane Library, the American Society of Clinical Oncology (ASCO), and the European Society of Medicine Oncology (ESMO) were searched from database inception until 16 February 2022. The endpoints of objective response rate (ORR), disease control rate (DCR), overall survival (OS), progression-free survival (PFS), and adverse events (AEs) were analyzed from different treatment schemes and tumor types. The protocol was registered in PROSPERO (CRD42022328927). RESULTS: This meta-analysis included forty-eight eligible studies. Combination therapy has improved ORR (RR = 1.40, p < 0.001), DCR (RR = 1.22, p < 0.001), and PFS (the median survival ratio (MSR) was estimated to be 1.475 p < 0.001) compared to anti-PD-1/PD-L1 but had no significant benefit on OS (MSR was estimated to be 1.086 p = 0.117). Besides, combination treatment strategies are more toxic in any grade AEs (RR = 1.13, p < 0.001) and grade 3-5 AEs (RR = 1.81, p < 0.001). CONCLUSIONS: Treatment with PD-1/PD-L1 inhibitors in combination with other antitumor therapies improve patients' ORR, DCR, and PFS compared to anti-PD-1/PD-L1. However, it is regrettable that there is no benefit to OS and an increased risk of AEs in combinatorial therapies.

13.
J Zhejiang Univ Sci B ; 24(1): 50-63, 2023 Jan 15.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-36632750

RESUMO

Accumulating evidence has confirmed the links between transfer RNA (tRNA) modifications and tumor progression. The present study is the first to explore the role of tRNA methyltransferase 5 (TRMT5), which catalyzes the m1G37 modification of mitochondrial tRNAs in hepatocellular carcinoma (HCC) progression. Here, based on bioinformatics and clinical analyses, we identified that TRMT5 expression was upregulated in HCC, which correlated with poor prognosis. Silencing TRMT5 attenuated HCC proliferation and metastasis both in vivo and in vitro, which may be partially explained by declined extracellular acidification rate (ECAR) and oxygen consumption rate (OCR). Mechanistically, we discovered that knockdown of TRMT5 inactivated the hypoxia-inducible factor-1 (HIF-1) signaling pathway by preventing HIF-1α stability through the enhancement of cellular oxygen content. Moreover, our data indicated that inhibition of TRMT5 sensitized HCC to doxorubicin by adjusting HIF-|1α. In conclusion, our study revealed that targeting TRMT5 could inhibit HCC progression and increase the susceptibility of tumor cells to chemotherapy drugs. Thus, TRMT5 might be a carcinogenesis candidate gene that could serve as a potential target for HCC therapy.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , tRNA Metiltransferases , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Hipóxia Celular , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Transdução de Sinais/genética , tRNA Metiltransferases/genética , tRNA Metiltransferases/metabolismo
14.
Mol Oncol ; 17(6): 1093-1111, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36587393

RESUMO

Preclinical studies have proven that nanosecond pulsed electric field (nsPEF) ablation can be a safe and effective treatment for humans with unresectable liver cancer that are ineligible for thermal ablation. The concomitant activation of antitumor immunity by nsPEF can also potentially prevent tumor recurrence. However, whether nsPEF exhibits similar efficacy in a clinical setting remains to be investigated. A prospective clinical trial (clinicaltrials.gov identifier: NCT04039747) was conducted to evaluate the safety and efficacy of ultrasound (US)-guided nsPEF ablation in 15 patients with unresectable liver cancer that were ineligible for thermal ablation. We found that nsPEF ablation was safe and produced a 12-month recurrence-free survival (RFS) and local RFS of 60% (9/15) and 86.7% (13/15), respectively, in the enrolled patients. Integrative proteomic and metabolomic analysis showed that sphingolipid metabolism was the most significantly enriched pathway in patient sera after nsPEF without recurrence within 8 months. A similar upregulation of sphingolipid metabolism was observed in the intratumoral mononuclear phagocytes (MNPs), rather than other immune and nonimmune cells, of an nsPEF-treated mouse model. We then demonstrated that lymphocyte antigen 6 complex, locus C2-positive (Ly6c2+ ) monocytes first differentiated into Ly6c2+ monocyte-derived macrophages with an increase in sphingolipid metabolic activity, and subsequently into Ly6c2+ dendritic cells (DCs). Ly6c2+ DCs communicated with CD8+ T cells and increased the proportions of IFN-γ+ CD8+ memory T cells after nsPEF, and this finding was subsequently confirmed by depletion of liver Ly6c2+ MNPs. In conclusion, nsPEF was a safe and effective treatment for liver cancer. The alteration of sphingolipid metabolism induced by nsPEF was associated with the differentiation of Ly6c2+ MNPs, and subsequently induced the formation of memory CD8+ T cells with potent antitumor effect.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias Hepáticas , Camundongos , Animais , Humanos , Linfócitos T CD8-Positivos/patologia , Estudos Prospectivos , Proteômica , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/patologia , Macrófagos/patologia , Diferenciação Celular
15.
Clin. transl. oncol. (Print) ; 25(1): 137-150, ene. 2023.
Artigo em Inglês | IBECS | ID: ibc-215828

RESUMO

Long noncoding RNAs (lncRNAs) have evoked considerable interest in recent years due to their critical functions in the regulation of disease processes. Abnormal expression of lncRNAs is found in multiple diseases, and lncRNAs have been exploited for diverse medical applications. The lncRNA MIR210HG is a recently discovered lncRNA that is widely dysregulated in human disease. MIR210HG was described to have biological functions with potential roles in disease development, including cell proliferation, invasion, migration, and energy metabolism. And MIR210HG dysregulation was confirmed to have promising clinical values in disease diagnosis, treatment, and prognosis. In this review, we systematically summarize the expression profiles, roles, underlying mechanisms, and clinical applications of MIR210HG in human disease (AU)


Assuntos
Humanos , Regulação Neoplásica da Expressão Gênica , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Neoplasias/genética , Prognóstico
16.
Clin Transl Oncol ; 25(1): 137-150, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36088513

RESUMO

Long noncoding RNAs (lncRNAs) have evoked considerable interest in recent years due to their critical functions in the regulation of disease processes. Abnormal expression of lncRNAs is found in multiple diseases, and lncRNAs have been exploited for diverse medical applications. The lncRNA MIR210HG is a recently discovered lncRNA that is widely dysregulated in human disease. MIR210HG was described to have biological functions with potential roles in disease development, including cell proliferation, invasion, migration, and energy metabolism. And MIR210HG dysregulation was confirmed to have promising clinical values in disease diagnosis, treatment, and prognosis. In this review, we systematically summarize the expression profiles, roles, underlying mechanisms, and clinical applications of MIR210HG in human disease.


Assuntos
Neoplasias , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias/genética , Prognóstico
17.
World J Stem Cells ; 14(9): 714-728, 2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36188116

RESUMO

BACKGROUND: The effect of hypoxia on mesenchymal stem cells (MSCs) is an emerging topic in MSC biology. Although long non-coding RNAs (lncRNAs) and messenger RNAs (mRNAs) are reported to play a critical role in regulating the biological characteristics of MSCs, their specific expression and co-expression profiles in human placenta-derived MSCs (hP-MSCs) under hypoxia and the underlying mech anisms of lncRNAs in hP-MSC biology are unknown. AIM: To reveal the specific expression profiles of lncRNAs in hP-MSCs under hypoxia and initially explored the possible mechanism of lncRNAs on hP-MSC biology. METHODS: Here, we used a multigas incubator (92.5% N2, 5% CO2, and 2.5% O2) to mimic the hypoxia condition and observed that hypoxic culture significantly promoted the proliferation potential of hP-MSCs. RNA sequencing technology was applied to identify the exact expression profiles of lncRNAs and mRNAs under hypoxia. RESULTS: We identified 289 differentially expressed lncRNAs and 240 differentially expressed mRNAs between the hypoxia and normoxia groups. Among them, the lncRNA SNHG16 was upregulated under hypoxia, which was also validated by reverse transcription-polymerase chain reaction. SNHG16 was confirmed to affect hP-MSC proliferation rates using a SNHG16 knockdown model. SNHG16 overexpression could significantly enhance the proliferation capacity of hP-MSCs, activate the PI3K/AKT pathway, and upregulate the expression of cell cycle-related proteins. CONCLUSION: Our results revealed the specific expression characteristics of lncRNAs and mRNAs in hypoxia-cultured hP-MSCs and that lncRNA SNHG16 can promote hP-MSC proliferation through the PI3K/AKT pathway.

18.
Biomed Res Int ; 2022: 3749306, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35872838

RESUMO

Background: Cancers of digestive system have high case-fatality rate. It is important to find more appropriate methods in diagnosing and predicting gastrointestinal malignances. And thrombospondin-2 (TSP-2) was reported to have the functions, although results were not identical. So we performed this meta-analysis to clarify the significance of TSP-2 in this area. Methods: PubMed, Embase, Web of Science, Cochrane Library, and Clinicaltrial.gov were searched for relevant studies. Data were extracted from these involved records. For the meta-analysis of diagnostic test, bivariate mixed effect model was used to estimate diagnostic accuracy. For prognosis part, HRs and their 95% CIs were pooled to compare the overall survival (OS) and disease-free survival (DFS) between patients with high TSP-2 and low TSP-2. Results: Nine records were eligible for the analysis of diagnostic test. Pooled results were as follows: sensitivity 0.60 (0.52, 0.68), specificity 0.96 (0.91, 0.98), positive likelihood ratio (PLR) 15.4 (7.3, 32.2), negative likelihood ratio (NLR) 0.42 (0.34, 0.50), and diagnostic odds ratio (DOR) 37 (18, 76). While in prognosis part, 10 articles were included. Patients with increased TSP-2 had shorter OS (HR = 1.64, 95% CI = 1.21-2.22); however, no difference was found in DFS between TSP-2 high and low groups (HR = 1.44, 95% CI = 0.28-7.33). Conclusions: TSP-2, as a diagnostic marker, has a high specificity but a moderate sensitivity. Meanwhile, it plays a role in predicting OS. Therefore, making TSP-2 a routine assay could be beneficial to high-risk individuals and patients with digestive malignances.


Assuntos
Neoplasias do Sistema Digestório , Neoplasias Gastrointestinais , Neoplasias do Sistema Digestório/diagnóstico , Intervalo Livre de Doença , Neoplasias Gastrointestinais/diagnóstico , Humanos , Prognóstico , Trombospondinas
19.
Front Microbiol ; 13: 907901, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35668769

RESUMO

Background: Organoids, which enable disease modeling and drug screening closer to an in vivo environment, can be isolated and grown from organs such as the brain, small intestine, kidney, lungs, and liver. To facilitate the establishment of liver and small intestinal organoids, we developed efficient protocols for cholangiocytes and intestine crypts collecting and organoid culturing. Methods: Cholangiocytes were collected from intrahepatic bile ducts, the gallbladder, and small intestine crypts by gravity settling and multistep centrifugation methods. The cells isolated were embedded with Matrigel and grew in three-dimensional spheroids in a suitable culture medium. The stability of organoid cells was assessed by subculture, cryopreservation, and thawing. RNA and DNA extraction of organoids, as well as immunostaining procedure, were also optimized. Hand-picking procedures were developed and performed to ensure similar growth characteristics of organoids. Results: A large number of cholangiocytes and small intestine crypts were collected under these protocols. Cholangiocytes developed into cyst-like structures after 3-4 days in Matrigel. After 1-2 weeks of cultivation, small intestinal organoids (in-orgs) developed buds and formed a mature structure. Compared to organoids derived from the gallbladder, cholangiocyte organoids (Cho-orgs) from intrahepatic the bile ducts grew more slowly but had a longer culture term, expressed the cholangiocytes markers Krt19 and Krt7, and recapitulated in vivo tissue organization. Conclusions: Our protocols simplified the cell collection procedure and avoided the possibility of exposing tissue-derived stem cells to mechanical damage or chemical injury by gravity settling and multistep centrifugation. In addition, our approach allowed similar growth characteristics of organoids from different mammalian tissue sources. The protocol requires 2-4 weeks to establish a stable organoid growth system. Organoids could be stably passaged, cryopreserved, and recovered under protocol guidance. Besides, the organoids of cholangiocytes and small intestines retained their original tissue characteristics, such as tissue-specific marker expression, which prepares them for further experiments such as preclinical in vitro trials and mechanism research studies.

20.
Acta Biomater ; 148: 258-270, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35724918

RESUMO

The acute lung injury (ALI) is an inflammatory disorder associated with cytokine storm, which activates various reactive oxygen species (ROS) signaling pathways and causes severe complications in patients as currently seen in coronavirus disease 2019 (COVID-19). There is an urgent need for medication of the inflammatory lung environment and effective delivery of drugs to lung to reduce the burden of high doses of medications and attenuate inflammatory cells and pathways. Herein, we prepared dexamethasone-loaded ROS-responsive polymer nanoparticles (PFTU@DEX NPs) by a modified emulsion approach, which achieved high loading content of DEX (11.61 %). DEX was released faster from the PFTU@DEX NPs in a ROS environment, which could scavenge excessive ROS efficiently both in vitro and in vivo. The PFTU NPs and PFTU@DEX NPs showed no hemolysis and cytotoxicity. Free DEX, PFTU NPs and PFTU@DEX NPs shifted M1 macrophages to M2 macrophages in RAW264.7 cells, and showed anti-inflammatory modulation to A549 cells in vitro. The PFTU@DEX NPs treatment significantly reduced the increased total protein concentration in BALF of ALI mice. The delivery of PFTU@DEX NPs decreased the proportion of neutrophils significantly, mitigated the cell apoptosis remarkably compared to the other groups, reduced M1 macrophages and increased M2 macrophages in vivo. Moreover, the PFTU@DEX NPs had the strongest ability to suppress the expression of NLRP3, Caspase1, and IL-1ß. Therefore, the PFTU@DEX NPs could efficiently suppress inflammatory cells, ROS signaling pathways, and cell apoptosis to ameliorate LPS-induced ALI. STATEMENT OF SIGNIFICANCE: The acute lung injury (ALI) is an inflammatory disorder associated with cytokine storm, which activates various reactive oxygen species (ROS) signaling pathways and causes severe complications in patients. There is an urgent need for medication of the inflammatory lung environment and effective delivery of drugs to modulate the inflammatory disorder and suppress the expression of ROS and inflammatory cytokines. The inhaled PFTU@DEX NPs prepared through a modified nanoemulsification method suppressed the activation of NLRP3, induced the polarization of macrophage phenotype from M1 to M2, and thereby reduced the neutrophil infiltration, inhibited the release of proteins and inflammatory mediators, and thus decreased the acute lung injury in vivo.


Assuntos
Lesão Pulmonar Aguda , Tratamento Farmacológico da COVID-19 , Nanopartículas , Pneumonia , Lesão Pulmonar Aguda/tratamento farmacológico , Animais , Síndrome da Liberação de Citocina , Dexametasona/farmacologia , Dexametasona/uso terapêutico , Lipopolissacarídeos/uso terapêutico , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Polímeros/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...